lunes, 19 de septiembre de 2016


BACTERIAS
Las bacterias son microorganismos unicelulares que presentan un tamaño de algunos micrómetros de largo (entre 0,5 y 5 um, por lo general) y diversas formas incluyendo esferas, barras y hélices. Las bacterias son procariotas y, por lo tanto, no tienen núcleo ni orgánulos internos. Generalmente poseen una pared celular compuesta de peptidoglucanos. Muchas bacterias disponen de flagelos o de otros sistemas de desplazamiento y son móviles.
Aunque el término bacteria incluía tradicionalmente a todos los procariotas, actualmente la taxonomía y la nomenclatura científica los divide en dos grupos. Estos dominios evolutivos se denominan Bacteria y Archaea. La división se justifica en las grandes diferencias que presentan ambos grupos a nivel bioquímico y en aspectos estructurales.
Los seres vivos se dividen actualmente en tres dominios: bacterias (Bacteria), arqueas (Archaea) y eucariontes (Eukarya). En los dominios Archaea y Bacteria se incluyen los organismos procariotas, esto es, aquellos cuyas células no tienen un núcleo celular diferenciado, mientras que en el dominio Eukarya se incluyen las formas de vida más conocidas y complejas (protistas, animales, hongos y plantas).
 Las bacterias también han estado implicadas en la segunda gran divergencia evolutiva, la que separó Archaea de Eukarya. Se considera que las mitocondrias de los eucariontes proceden de la endosimbiosis de una proteobacteria alfa. En este caso, el antepasado de los eucariontes, que posiblemente estaba relacionado con las arqueas (el organismo Neomura), ingirió una proteobacteria que, al escapar a la digestión, se desarrolló en el citoplasma y dio lugar a las mitocondrias. Estas se pueden encontrar en todos los eucariontes, aunque a veces en formas muy reducidas, como en los protistas amitocondriales. Después, e independientemente, una segunda endosimbiosis por parte de algún eucarionte mitocondrial con una cianobacteria condujo a la formación de los cloroplastos de algas y plantas. Se conocen incluso algunos grupos de algas que se han originado claramente de acontecimientos posteriores de endosimbiosis por parte de eucariotas heterótrofos que, tras ingerir algas eucariotas, se convirtieron en plastos de segunda generación.

Morfología de las bacterias


Las bacterias presentan una amplia variedad de tamaños y formas. La mayoría presentan un tamaño diez veces menor que el de las células eucariotas, es decir, entre 0,5 y 5μm. Sin embargo, algunas especies como Thiomargarita namibiensis y Epulopiscium fishelsoni llegan a alcanzar los 0,5 mm, lo cual las hace visibles al ojo desnudo. En el otro extremo se encuentran bacterias más pequeñas conocidas, entre las que cabe destacar las pertenecientes al género Mycoplasma, las cuales llegan a medir solo 0,3 µm, es decir, tan pequeñas como los virus más grandes. La forma de las bacterias es muy variada y, a menudo, una misma especie adopta distintos tipos morfológicos, lo 24 que se conoce como polimorfismo. De todas formas, podemos distinguir tres tipos fundamentales de bacterias:
● Coco (del griego kókkos, grano): de forma esférica.
○ Diplococo: cocos en grupos de dos.
○ Tetracoco: cocos en grupos de cuatro.
○ Estreptococo: cocos en cadenas.
○ Estafilococo: cocos en agrupaciones irregulares o en racimo.
● Bacilo (del latín baculus, varilla): en forma de bastoncillo.
● Formas helicoidales:
○ Vibrio: ligeramente curvados y en forma de coma, judía o cacahuete.
○ Espirilo: en forma helicoidal rígida o en forma de tirabuzón.
○ Espiroqueta: en forma de tirabuzón (helicoidal flexible).
Algunas especies presentan incluso formas tetraédricas o cúbicas. Esta amplia variedad de formas es determinada en última instancia por la composición de la pared celular y el citoesqueleto, siendo de vital importancia, ya que puede influir en la capacidad de la bacteria para adquirir nutrientes, unirse a superficies o moverse en presencia de estímulos. A continuación se citan diferentes especies con diversos patrones de asociación:

● Neisseria gonorrhoeae en forma diploide (por pares).
● Streptococcus en forma de cadenas.
● Staphylococcus en forma de racimos.
● Actinobacteria en forma de filamentos. Dichos filamentos suelen rodearse de una vaina que contiene multitud de células individuales, pudiendo llegar a ramificarse, como el género Nocardia, adquiriendo así el aspecto del micelio de un hongo.

Las bacterias presentan la capacidad de anclarse a determinadas superficies y formar un agregado celular en forma de capa denominado biopelícula o biofilme, los cuales pueden tener un grosor que va desde unos pocos micrómetros hasta medio metro. Estas biopelículas pueden congregar diversas especies bacterianas, además de protistas 24 y arqueas, y se caracterizan por formar un conglomerado de células y componentes extracelulares, alcanzando así un nivel mayor de organización o estructura secundaria denominada microcolonia, a través de la cual existen multitud de canales que facilitan la difusión de nutrientes. En ambientes naturales tales como el suelo o la superficie de las plantas, la mayor parte de las bacterias se encuentran ancladas a las superficies en forma de biopelículas. Dichas biopelículas deben ser tenidas en cuenta en las infecciones bacterianas crónicas y en los implantes médicos, ya que las bacterias que forman estas estructuras son mucho más difíciles de erradicar que las bacterias individuales. Por último, cabe destacar un tipo de morfología más compleja aún, observable en algunos microorganismos del grupo de las mixobacterias. Cuando estas bacterias se encuentran en un medio escaso en aminoácidos son capaces de detectar a las células de alrededor, en un proceso conocido como quorum sensing, en el cual todas las células migran hacia las demás y se agregan, dando lugar a cuerpos fructíferos que pueden alcanzar los 0,5 mm de longitud y contener unas 100.000 células. Una vez formada dicha estructura las bacterias son capaces de llevar a cabo diferentes funciones, es decir, se diferencian, alcanzando así un cierto nivel de organización pluricelular. Por ejemplo, entre una y diez células migran a la parte superior del cuerpo fructífero y, una vez allí, se diferencian para dar lugar a un tipo de células latentes denominadas mixosporas, las cuales son más resistentes a la desecación y, en general, a condiciones ambientales adversas.
Las bacterias son organismos relativamente sencillos. Sus dimensiones son muy reducidas, unos 2 μm de ancho por 7-8 μm de longitud en la forma cilíndrica (bacilo) de tamaño medio; aunque son muy frecuentes las especies de 0,5-1,5 μm. Carecen de un núcleo delimitado por una membrana aunque presentan un nucleoide, una estructura elemental que contiene una gran molécula circular de ADN. El citoplasma carece de orgánulos delimitados por membranas y de las formaciones protoplasmáticas propias de las células eucariotas. En el citoplasma se pueden apreciar plásmidos, pequeñas moléculas circulares de ADN que coexisten con el nucleoide, contienen genes y son comúnmente usados por las bacterias en la conjugación.
El 24 citoplasma también contiene vacuolas (gránulos que contienen sustancias de reserva) y ribosomas (utilizados en la síntesis de proteínas). Una membrana citoplasmática compuesta de lípidos rodea el citoplasma y, al igual que las células de las plantas, la mayoría posee una pared celular, que en este caso está compuesta por peptidoglicano (mureína). Algunas bacterias, además, presentan una segunda membrana lipídica (membrana externa) rodeando a la pared celular. El espacio comprendido entre la membrana citoplasmática y la pared celular (o la membrana externa si esta existe) se denomina espacio periplásmico. Algunas bacterias presentan una cápsula y otras son capaces de evolucionar a endosporas, estadios latentes capaces de resistir condiciones extremas. Entre las formaciones exteriores propias de la célula bacteriana destacan los flagelos y los pili.

La membrana citoplasmática de las bacterias es similar a la de plantas y animales, si bien generalmente no presenta colesterol. Tiene una estructura similar a la de plantas y animales. Es una bicapa lipídica compuesta fundamentalmente de fosfolípidos en la que se insertan moléculas de proteínas. En las bacterias realiza numerosas funciones entre las que se incluyen las de barrera osmótica, transporte, biosíntesis, transducción de energía, centro de replicación de ADN y punto de anclaje para los flagelos. A diferencia de las membranas eucarióticas, generalmente no contiene esteroles (son excepciones micoplasmas y algunas proteobacterias), aunque puede contener componentes similares denominados hopanoides. Muchas importantes reacciones bioquímicas que tienen lugar en las células se producen por la existencia de gradientes de concentración a ambos lados de una membrana. Este gradiente crea una diferencia potencial análoga a la de una batería eléctrica y permite a la célula, por ejemplo, el transporte de electrones y la obtención de energía. La ausencia de membranas internas en las bacterias significa que estas reacciones tienen que producirse a través de la propia membrana citoplasmática, entre el citoplasma y el espacio periplásmico. Puesto que las bacterias son procariotas no tienen orgánulos citoplasmáticos delimitados por membranas y por ello presentan pocas estructuras intracelulares. Carecen de núcleo celular, mitocondrias, cloroplastos y de los otros orgánulos presentes en las células eucariotas, tales como el aparato de Golgi y el retículo endoplasmático. Como excepción, algunas bacterias contienen estructuras intracelulares rodeadas por membranas que pueden considerarse primitivos orgánulos. Un ejemplo son los “tilacoides” de las cianobacterias. Las bacterias contienen ribosomas para la síntesis de proteínas, pero éstos son diferentes a los de eucariotas y arqueas. La estructura de los ribosomas de arqueas y bacterias es 24 similar, pues ambos son de tipo 70S mientras que los ribosomas eucariotas son de tipo 80S. Sin embargo, la mayoría de las proteínas ribosomiales, factores de traducción y ARNt arqueanos son más parecidos a los eucarióticos que a los bacterianos. Muchas bacterias presentan gránulos intracelulares para el almacenaje de sustancias, como por ejemplo glucógeno, polifosfatos, azufre o polihidroxialcanoatos.
Estructuras extracelulares
 Las bacterias disponen de una pared celular que rodea a su membrana citoplasmática. Las paredes celulares bacterianas están hechas de peptidoglucano (llamado antiguamente mureína). Esta sustancia está compuesta por cadenas de polisacárido enlazadas por péptidos inusuales que contienen aminoácidos. Estos aminoácidos no se encuentran en las proteínas, por lo que protegen a la pared de la mayoría de las peptidasas. Las paredes celulares bacterianas son distintas de las que tienen plantas y hongos, compuestas de celulosa y quitina, respectivamente. Son también distintas a las paredes celulares de Archaea, que no contienen peptidoglucanos. El antibiótico penicilina puede matar a muchas bacterias inhibiendo un paso de la síntesis del peptidoglucano.
Existen dos diferentes tipos de pared celular bacteriana denominadas Gram-positiva y 24 Gram-negativa, respectivamente. Estos nombres provienen de la reacción de la pared celular a la tinción de Gram, un método tradicionalmente empleado para la clasificación de las especies bacterianas. Las bacterias Gram-positivas tienen una pared celular gruesa que contiene numerosas capas de peptidoglicano en las que se inserta ácido teicoico. En cambio, las bacterias Gram-negativas tienen una pared relativamente fina, consistente en unas pocas capas de peptidoglicano, rodeada por una segunda membrana lipídica (la membrana externa) que contiene lipopolisacáridos y lipoproteínas. Los micoplasmas son una excepción, pues carecen de pared celular. La mayoría de las bacterias tienen paredes celulares Gram-negativas; solamente son Gram-positivas Firmicutes y Actinobacteria. Estos dos grupos eran antiguamente conocidos como bacterias Gram-positivas de contenido GC bajo y bacterias Gram-positivas de contenido GC alto, respectivamente. Estas diferencias en la estructura de la pared celular dan lugar a diferencias en la susceptibilidad antibiótica. Por ejemplo, la vancomicina puede matar solamente a bacterias Gram-positivas y es ineficaz contra patógenos Gramnegativos, tales como Haemophilus influenzae o Pseudomonas aeruginosa. Dentro del filo Actinobacteria cabe hacer una mención especial al género Mycobacterium, el cual, si bien se encuadra dentro de las Gram positivas, no parece serlo desde el punto de vista empírico, ya que su pared no retiene el tinte. Esto se debe a que presentan una pared celular poco común, rica en ácidos micólicos, de carácter hidrófobo y ceroso y bastante gruesa, lo que les confiere una gran resistencia.
Los flagelos son largos apéndices filamentosos compuestos de proteínas y utilizados para el movimiento. Tienen un diámetro aproximado de 20 nm y una longitud de hasta 20 μm. Los flagelos son impulsados por la energía obtenida de la transferencia de iones. Esta transferencia es impulsada por el gradiente electroquímico que existe entre ambos lados de la membrana citoplasmática.
Endosporas
Ciertos géneros de bacterias Gram-positivas, tales como Bacillus, Clostridium, Sporohalobacter, Anaerobacter y Heliobacterium, pueden formar endosporas. Las endosporas son estructuras durmientes altamente resistentes cuya función primaria es sobrevivir cuando las condiciones ambientales son adversas. En casi todos los casos, las endosporas no forman parte de un proceso reproductivo, aunque Anaerobacter puede formar hasta siete endosporas a partir de una célula. Las endosporas tienen una base central de citoplasma que contiene ADN y ribosomas, rodeada por una corteza y protegida por una cubierta impermeable y rígida. Las endosporas no presentan un metabolismo detectable y pueden sobrevivir a condiciones físicas y químicas extremas, tales como altos niveles de luz ultravioleta, rayos gamma, detergentes, desinfectantes, calor, presión y desecación. En este estado durmiente, las bacterias pueden seguir viviendo durante millones de años, e incluso pueden sobrevivir en la radiación y vacío del espacio exterior. Las endosporas pueden también causar enfermedades. Por ejemplo, puede contraerse carbunco por la inhalación de endosporas de Bacillus anthracis y tétanos por la contaminación de las heridas con endosporas de Clostridium tetani.

Metabolismo
 En contraste con los organismos superiores, las bacterias exhiben una gran variedad de tipos metabólicos. La distribución de estos tipos metabólicos dentro de un grupo de bacterias se ha utilizado tradicionalmente para definir su taxonomía, pero estos rasgos no corresponden a menudo con las clasificaciones genéticas modernas. El metabolismo bacteriano se clasifica en base a tres criterios importantes: el origen del carbono, la fuente de energía y los donadores de electrones. Un criterio adicional para clasificar a los microorganismos que respiran es el receptor de electrones usado en la respiración. Según la fuente de carbono, las bacterias se pueden clasificar como:
 ● Heterótrofas, cuando usan compuestos orgánicos.
 ● Autótrofas, cuando el carbono celular se obtiene mediante la fijación del dióxido de carbono. Las bacterias autótrofas típicas son las cianobacterias fotosintéticas, las bacterias verdes del azufre y algunas bacterias púrpura. Pero hay también muchas otras especies quimiolitotrofas, por ejemplo, las bacterias nitrificantes y oxidantes del azufre. Según la fuente de energía, las bacterias pueden ser:
● Fototrofas, cuando emplean la luz a través de la fotosíntesis.
● Quimiotrofas, cuando obtienen energía a partir de sustancias químicas que son oxidadas principalmente a expensas del oxígeno (respiración aerobia) o de otros receptores de electrones alternativos (respiración anaerobia). Según los donadores de electrones, las bacterias también se pueden clasificar como: 24
● Litotrofas, si utilizan como donadores de electrones compuestos inorgánicos.
● Organotrofas, si utilizan como donadores de electrones compuestos orgánicos. Los organismos quimiotrofos usan donadores de electrones para la conservación de energía (durante la respiración aerobia, anaerobia y la fermentación) y para las reacciones biosintéticas (por ejemplo, para la fijación del dióxido de carbono), mientras que los organismos fototrofos los utilizan únicamente con propósitos biosintéticos. Los organismos que respiran usan compuestos químicos como fuente de energía, tomando electrones del sustrato reducido y transfiriéndolos a un receptor terminal de electrones en una reacción redox. Esta reacción desprende energía que se puede utilizar para sintetizar ATP y así mantener activo el metabolismo.
Movimiento
Algunas bacterias son inmóviles y otras limitan su movimiento a cambios de profundidad. Por ejemplo, cianobacterias y bacterias verdes del azufre contienen vesículas de gas con las que pueden controlar su flotabilidad y así conseguir un óptimo de luz y alimento. Las bacterias móviles pueden desplazarse por deslizamiento, mediante contracciones o más comúnmente usando flagelos. Algunas bacterias pueden deslizarse por superficies sólidas segregando una sustancia viscosa, pero el mecanismo que actúa como propulsor es todavía desconocido. En el movimiento mediante contracciones, la bacteria usa su pilus de tipo IV como gancho de ataque, primero lo extiende, anclándolo y después lo contrae con una fuerza notable (>80 pN). El flagelo bacteriano es un largo apéndice filamentoso helicoidal propulsado por un motor rotatorio (como una hélice) que puede girar en los dos sentidos. El motor utiliza como energía un gradiente electroquímico a través de la membrana. Los flagelos están compuestos por cerca de 20 proteínas, con aproximadamente otras 30 proteínas para su regulación y coordinación. Hay que tener en cuenta que, dado el tamaño de la bacteria, el agua les resulta muy viscosa y el mecanismo de propulsión debe ser muy potente y eficiente. Los flagelos bacterianos se encuentran tanto en las bacterias Gram-positivas como Gram-negativas y son completamente diferentes de los eucarióticos y, aunque son superficialmente similares a los arqueanos, se consideran no homólogos.
Las bacterias crecen hasta un tamaño fijo y después se reproducen por fisión binaria una forma de reproducción asexual.
Faces de las bacterias:
-       Fase de adaptación.
-       Fase exponencial.
-       Fase estacional.
Resultado de imagen para bacterias













No hay comentarios.:

Publicar un comentario